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1 Meaning of linear dependence and independence

On the last lecture we stated the result that if the system of vectors is linearly dependent, then

at least one vector of the. system can be expressed as a linear combination of others. We gave

an example how to do it. Now we’ll give an example when it is not possible to express any

vector as a linear combination of others.

Example 1.1. Let

u1 =




1

0

0


 , u2 =




0

1

0


 , u3 =




0

0

1




Here u1, u2 and u3 are linearly independent and none of these vectors can be expressed as a

linear combination of other 2 vectors. For example, for u1 there are no real a and b such that

u1 =




1

0

0


 = au2 + bu3 = a




0

1

0


 + b




0

0

1




2 Spanning sets

Definition 2.1. Let V be a vector space. Vectors v1, v2, . . . , vn are called a spanning set of

V if every element of V is a linear combination of v1, v2, . . . , vn. In this case the space V is

called a span of these vectors and it is denoted by V = 〈v1, v2, . . . , vn〉

Example 2.2. Consider the vector space R3. Then vectors v1 = (1, 0, 0), v2 = (0, 1, 0), and

v3 = (0, 0, 1) form a spanning set of R3, since if u ∈ V equals to (a, b, c), then u = av1+bv2+cv3.

Example 2.3. Consider the vector space R3. Then vectors v1 = (1, 1, 1), v2 = (1, 1, 0), and

v3 = (1, 0, 0) form a spanning set of R3, since if u ∈ V equals to (a, b, c), then u = cv1 + (b −
c)v2 + (a− b)v3. For example, (4, 6, 1) = 1(1, 1, 1) + 5(1, 1, 0)− 2(1, 0, 0).
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Example 2.4. Consider the vector space P (t). Then vectors 1, t, t2, t3, . . . are a spanning set

of P (t) since it is clear that every polynomial can be expressed as a linear combination of these

vectors.

Example 2.5. Consider a vector space M2,2 of 2 × 2-matrices. Then the following matrices

form a spanning set for M2,2: v1 =

(
1 0

0 0

)
, v2 =

(
0 1

0 0

)
, v3 =

(
0 0

1 0

)
, v4 =

(
0 0

0 1

)
, since

any

(
a b

c d

)
= av1 + bv2 + cv3 + dv4.

3 Homogeneous systems

As we saw in the previous lecture, in order to figure out whether the given vectors are linearly

dependent or independent, we need to solve linear system with zeros in the right hand side.

This leads us to the following topic.

Definition 3.1. A system of linear equations is called homogeneous if right-hand sides of all

its equations are equal to 0.

Example 3.2. The following system is homogeneous:

{
x1 + 2x2 + x4 = 0

3x1 + x2 − x3 + 5x4 = 0

The most important fact about homogeneous systems is that it has at least one solution,

i.e. zero-solution — the solution where all the variables are equal to 0. As we saw before,

for general linear systems there are 3 possible cases — no solutions, 1 solution, and infinitely

many solutions. Here for homogeneous systems the first case may not happen. So, we have the

following lemma:

Lemma 3.3. The homogeneous system of linear equations may have unique solution or in-

finitely many solutions.

Moreover, we can give another statement which tells us when the system has infinitely many

solutions.

Theorem 3.4. A homogeneous system with the number of equations less then the number of

variables has infinitely many solutions.

Proof. Let’s transpose the system to a row echelon form. We will not get an equation of the

form 0x1 + · + 0xn = b, where b > 0. Moreover, there will be free variables (since all the

variables can not be leading — each equation has only one leading variable, so the number of
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leading variables is not greater than the number of equations, and the total number of variables

is greater). So, the system will have infinitely many solutions, since we can assign any value to

free variables.

Example 3.5. The system from the example 3.2 has infinitely many solutions since the number

of equations — 2 is less than the number of variables — 4.

Example 3.6. For this theorem to be true, it is important to consider only homogeneous sys-

tems: the following system has 4 variables and 2 equations as well, but has no solution:

{
x1 + 2x2 − x3 + x4 = 1

2x1 + 4x2 − 2x3 + 2x4 = 3

since if we subtract the first equation multiplied by 2 from the second one, we’ll get 0 = 1.

4 Basis

On the last lecture we considered spanning sets of a vector space V — sets of vectors such that

any vector from V can be expressed as a linear combination of vectors from this set.

Example 4.1. Vectors

u1 =

(
1

0

)
, u2 =

(
0

1

)

form a spanning set for R2. To check this one should take arbitrary vector and represent it as

a linear combination of u1 and u2:

(
a

b

)
= au1 + bu2 = a

(
1

0

)
+ b

(
0

1

)

Vectors

v1 =

(
1

0

)
, v2 =

(
2

0

)

do not form a spanning set for R2. For example vector

(
0

1

)
can not be represented as a linear

combination of v1 and v2: there are no a, b ∈ R such that

(
0

1

)
6= a

(
1

0

)
+ b

(
2

0

)
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Example 4.2. Vectors

u1 =

(
1

0

)
, u2 =

(
0

1

)
, u3 =

(
1

1

)

form a spanning set for R2. To check this one should take arbitrary vector and represent it as

a linear combination of u1 and u2:

(
a

b

)
= au1 + bu2 + 0u3 = a

(
1

0

)
+ b

(
0

1

)
+ 0

(
1

1

)

Moreover, here we can give many different representations, e.g.

(
a

b

)
= au1 + bu2 + 0u3 = (a− 1)

(
1

0

)
+ (b− 1)

(
0

1

)
+ 1

(
1

1

)

For example,

(
3

5

)
= 3

(
1

0

)
+ 5

(
0

1

)
+ 0

(
1

1

)
= 2

(
1

0

)
+ 4

(
0

1

)
+ 1

(
1

1

)

So, we see that there may be many different spanning sets for a vector space, and they

may have different number of vectors. The spanning set in the example 4.1 is better than the

spanning set in the example 4.2 since it contains less vectors.

Definition 4.3. The system of vectors from vector space V is called basis if it is

• linearly independent and

• forms a spanning set for V .

Example 4.4. Consider the vector space R2. The system of vectors

u1 =

(
1

0

)
, u2 =

(
0

1

)

is a basis. Let’s check it.

• This system forms a spanning set since any vector can be represented as a linear combi-

nation of u1, u2 and u3:

(
a

b

)
= au1 + bu2 = a

(
1

0

)
+ b

(
0

1

)
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• This system is independent. Let’s check it. We’ll form a linear combination which is

equal to 0, and see that it is trivial:

x

(
1

0

)
+ y

(
0

1

)
=

(
0

0

)

This is equivalent to the following system of linear equations:
{

x = 0

y = 0

So, we get that x = 0, y = 0. So, this linear combination is trivial, and thus the system

of vectors is linearly independent.

Example 4.5. Consider the vector space R2. The system of vectors

u1 =

(
1

1

)
, u2 =

(
0

1

)

is a basis. Let’s check it.

• This system forms a spanning set since any vector can be represented as a linear combi-

nation of u1 and u2:(
a

b

)
= au1 + (b− a)u2 = a

(
1

1

)
+ (b− a)

(
0

1

)

• This system is independent. Let’s check it. We’ll form a linear combination which is

equal to 0, and see that it is trivial:

x

(
1

1

)
+ y

(
0

1

)
=

(
0

0

)

This is equivalent to the following system of linear equations:
{

x = 0

x + y = 0

This system has only one solution x = 0, y = 0. So, this linear combination is trivial,

and thus the system of vectors is linearly independent.

Example 4.6. Consider a vector space R2. The system of vectors

u1 =

(
1

0

)
, u2 =

(
2

0

)

does not form a basis since it is not a spanning set for R2. For example we can never represent

vector

(
0

1

)
as a linear combination of u1 and u2.
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Example 4.7. Consider a vector space R2. The system of vectors

u1 =

(
1

0

)
, u2 =

(
0

1

)
, u3 =

(
1

1

)

does not form a basis since these vectors are not linearly independent. To check this let’s form

a linear combination and make it equal to 0:

x

(
1

0

)
+ y

(
0

1

)
+ z

(
1

1

)
=

(
0

0

)

This is equivalent to the following system of linear equations:

{
x + z = 0

y + z = 0

This system has a solution where not all variables are equal to 0, e.g. x = 1, y = 1, z = −1. We

don’t need even to look for a solution, since this is a homogeneous system with two equations

and three variables, and thus it has infinite number of solutions. So, these vectors are not

linearly independent, since there is a nontrivial linear combination which is equal to 0-vector,

e.g. (
1

0

)
+

(
0

1

)
−

(
1

1

)
=

(
0

0

)
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